滑座作为加工中心的基础部件,既是工作台的支承件,也是伺服进给系统的运动部件,其质量和受力变形直接影响工作台的回转进给和直线进给精度,因此, 如何控制好滑座的结构振动特性是设计人员面临的主要技术难题之一[1]。当今,国内的科研工作者对机床 的结构设计从传统的经验类比法逐步转向有限元法等分析软件计算法。郑文标等通过有限元分析和灵敏度分析,找到了床身结构的薄弱尺寸,再通过对比优化前后的固有频率,验证了优化的有效性[2]。孙晓俊等人应用 ANSYS 优化了某齿轮复合加工机床立柱的尺寸, 寻找出最优解[3]。范晋伟等人利用 Ansys Workbench 对垫板进行模态分析,根据振型图找出其薄弱部件,再对比 5 种优化途径,提高了垫板的固有频率[4]。这些科研工作者的优化设计都取得了很好的优化结果。但 上述研究均以部件的单个性能作为优化目标,并没有对机构的综合性能进行优化。
本文以某立式加工中心为研究对象,在对滑座进行理论、试验模态分析的基础上,分析其动态特性。运用灵敏度分析在滑座的众多尺寸中找出对质量、一阶固有频率影响最大的 3 个参数。建立神经网络模型, 分析出这些参数与滑座一阶固有频率和质量的非线性关系,最后通过多目标遗传算法寻求最优解。在满足强度的情况下,减轻了滑座的质量,并提高了其动静态性能,为滑座的设计提供了参考。
1 有限元模型的建立
为了保证分析的准确性,根据滑座的图纸 1: 1 建立三维模型,并且设置材料性能。该滑座材料为 HT300, 杨氏模量为 1. 43×1011 Pa,泊松比为 0. 27,材料密度为7. 3×103 kg / m3,滑座有限元模型,如图 1 所示。

网格划分的结果对有限元仿真速度和精度有较大 影响,通常来说,划分的网格数目越多,计算精度越高, 但计算速度较慢,因此划分网格时要选择适当精度的网 格[5]。本文通过自动划分网格法划分网格,在设置相关参数后,得出节点数为 164 447,单元数为168 235,划分的模型如图 2 所示。

1 滑座动力学分析
2. 1 理论模态分析
目前机床结构的理论模态分析,通常利用计算机软件进行有限元分析。主流的有限元分析软件主要有Ansys、Abaqus、Admas 等等。本次研究中,采用 Ansys Workbench 17. 0 软件进行模态分析,可以和 Solidwork 三维制图软件进行数据对接,方便改变滑座的尺寸参数。首先设定滑座的边界条件,使边界条件和试验模态分析的一致,提取滑座的各阶固有频率。前四阶固有频率,如表 1 所示,振型如图 3 所示。

表 1 立式加工中心滑座固有频率和振型

2. 2 试验模态分析
本实验采用 B&K 公司的 7700 Pulse 多通道动态信号采集分析系统、4507B 型内置放大电路型加速度传感器、YC2 模态试验力锤等设备来记录分析数据, 如图 4 所示。将滑座放置在隔振台上,布置了 70 个测点,通过单点激励、多点识振的方法,获取模态振型,图5 为频率响应曲线。


对该型立式加工中心进行模态实验分析,获得前四阶固有频率与振型,理论模态分析和试验模态分析结果的对比如表 2,可以看出,两者的误差在 10% 之内,说明该有限元模型是有效的,边界条件的设定与工 作状况一致。
3 滑座优化
3. 1 对滑座参数的灵敏度分析
此加工中心的滑座有很多尺寸参数,为了减少计算量,需先对滑座尺寸进行灵敏度分析,找出对一阶固有频率和总质量影响最大的尺寸,将其作为尺寸参数。 对滑座结构进行分析后,选取 5 个尺寸进行分析,如表
3 所示。分析后得到灵敏度分析图,如图 6 所示。


从图 6 可以看出,对滑座一阶固有频率和总质量影响比较大的尺寸依次为筋板长度 ds_1 、筋板厚度ds_2 、底面槽宽 ds_3 。
3. 2 神经网络建模
BP 神经网络拥有很好的非线性映射能力,并且结构简单,计算速度快,可以较为便捷的解决多目标优化问题。因此对于滑座的 3 个尺寸参数可以建立输入输出映射,建立其与一阶固有频率和总质量的关系,进行样本点的学习。由于滑座的模态分析试验耗时很长, 无法为神经网络算法提供快速、大量的样本数据,因此只考虑实验点在实验范围内均匀散布的数据,即采用均匀设计法进行样本点的输入,大大提高了数据的有效利用性,并且减小了神经网络的误差。
表 4 为神经网络的测试数据,前 50 组为训练数据,即对权值和阈值进行修正,直到收敛为止,第 50 ~60 组为测试数据。
为了防止神经网络误差过大,用第 50 ~ 60 组测试数据对神经网络模型进行测试,如图 7 所示,误差均在5%之内。由此可知,该测试数据有效,可以进行下一步的分析。


3.3 遗传算法寻优
由于当今机床的发展朝着绿色、轻量化的方向发展,因此关于此滑座的优化可以采用一阶固有频率的最大并且总质量最小为目标进行多目标优化。而且对 一阶固有频率进行优化是为了避免一阶固有频率和激 励频率相近,而引起共振现象的产生,因此使得一阶固 有频率大于等于激振频率 210 Hz。
多目标优化问题描述为:

式中: fi( x) 为目标优化函数; x 为自变量; ub 、lb 分别为上、下限。
优化方法采用遗传算法,是计算机科学人工智能领域中用于解决最优化的一种搜索启发式算法,是进 化算法的一种[7]。通过测试验样本数据建立优化目标方程,使用 Matlab 的 GA 工具箱,对该优化目标求解,得出的一阶固有频率和总质量带回到 Ansys Work-bench 中分析结果,如表 5 所示。
表中,优化后的方案为多目标优化的结果,通过比较得出优化后的一阶固有频率有明显的提高,并且远离激振频率,避免共振。滑座的总质量下降了 19 kg, 实现了滑座的轻量化设计,达到了优化目的。

4 结语
本文针对某型号加工中心进行优化设计,先进行理论与试验模态分析,分析后的结果误差较小,说明有限元模型建立有效。以此为基础,进行灵敏度分析,找出影响较大的尺寸参数,采用均匀设计法进行神经网络的训练。最后采用了多目标优化的方法,得到了合适的优化方案。为后续机床零部件的设计提供了参考方案。
2024-11
本文以组合式六角亭模型为实例,分析工艺难点与加工可行性,指出该模型的加工难点是模型形状不规则和整体刚性差,并通过设计新的工艺方案解决加工难点,完成了模型整体的加工。新的加工工艺有助于提高加工效率和精度,为五轴数控加工提供了一个典型案例,对于五轴加工中心数控加工也具有指导作用和重要… [了解更多]
2024-11
宇匠数控 备注:为保证文章的完整度,本文核心内容由PDF格式显示,如未有显示请刷新或转换浏览器尝试,手机浏览可能无法正常使用!本文摘要:通过对混联五轴加工中心自适应深度学习控制方法的 研 究,可 知 此 方 法 的 创 新 之 处 在 于:1)建 立 了 机 床 的 运 动 学 … [了解更多]
2024-11
在机测量技术由于其成本低、检测效率高、无需二次装夹等优势被广泛用于零件加工测量当中,使得五轴加工中心和五轴钻攻中心,同时又兼具测量功能。在机测量系统的构成如图1所示,硬件部分主要是由高精度探头、信号接收器、机床整个本体,软件部分由机床控制系统、测量软件等组成[8]。待零件加工完成… [了解更多]
2024-11
加工精度是影响机床性能和产品质量的主要难题,也是制约国家精密制造能力的重要因素。本文以五轴加工中心为对象,针对提升机床精度进行了研究。并且随着科技的发展,精密的仪器和零件在生产实践中占据的分量逐渐增加,在数控机床这种精密机器精度不断提高的同时,必须控制内外界环境的随机影响因素在… [了解更多]