为满足电子产品小型化、轻量化、高可靠等要求, 产品螺纹孔规格逐步变小,加工螺纹孔逐渐由切削加工向挤压加工转变。挤压丝锥通过挤压形成螺纹孔, 由于在挤压成形过程中金属纤维并未被切断,属于无屑加工,故而成形的螺纹孔有合理的流线分布,更好的 机械性能,更大的承载能力[1]。而使用切削丝锥加工 出的螺纹孔,由于在切削过程中,金属的纤维流向被切 断,如图 1 所示,故而,加工出的螺纹孔强度小、精度低、粗糙度差; 此外,螺纹孔内常常会残留切屑,且经过反复的安装调试,容易引发出现电子器件“短路”、螺 纹孔“滑丝”等问题 ,从而导致零件使用寿命短[2]。切削丝锥和挤压丝锥加工出的螺纹牙形如图 2 所示, 尤其是对于铜合金零件小螺纹孔来说,这些缺陷尤其 突出,故而,挤压丝锥能够有效解决切削丝锥所带来的 缺陷[3]。
但在挤压丝锥使用过程中,常常会因为对加工工艺、底孔直径、转速、冷却液等参数的选择不当,从而导 致加工出底孔偏大、烂牙、丝锥折断,导致工件报废等问题。因此,本文着重对冷挤压铜合金工件小螺纹孔的工艺路线及切削参数进行研究。
1 挤压丝锥数控加工特点
挤压丝锥加工螺纹孔工艺: 即把挤压丝锥挤入预钻的底孔内,挤压丝锥在机床主轴的带动下,从背棱开 始,逐步挤入工件已钻好的底孔内表面,形成螺纹,而被挤出的金属则被迫转移流入丝锥扣之间的间隙,与此同时,工件螺纹牙形也移入丝锥扣之间的间隙,逐步 增高工件螺纹牙形高度。当丝锥挤压锥部的第一个棱 齿挤入已钻好的底孔内时,挤压出的金属将会发生塑性变形,由卸载定律可知,棱齿移开后被挤压部分的弹 性变形部分会恢复,而塑性变形部分会保留; 接着,丝锥第二个棱齿继续挤压该部分,材料将再次发生弹塑性变形,当第二个棱齿离开后,该处又发生弹性变形恢 复,而塑性变形保留; 依此类推,直到挤压锥部棱齿全部加工完后,就形成了一个完整的牙形[4]。经历咬入、挤压、翻转、塑形等加工过程,最终建立起完整的牙 形。在螺孔加工过程中,由于金属材料受到挤压丝锥的反复挤压,故而减小了集中应力,且螺纹孔表面在形 成过程中,产生了冷作硬化,表层强度明显提高,表面质量显著提升[5]。
宇匠数控 备注:为保证文章的完整度,本文核心内容由PDF格式显示,如未有显示请刷新或转换浏览器尝试,手机浏览可能无法正常使用!
本文通过改进工艺路线、分析冷却液浓度、推算底孔直径公式、统计攻丝用时及选择刀具型号,最终得到 了合理的工艺路线和优化切削参数。
( 1) 按牙型高度的 85% ~ 95%来加工预钻孔直径, 则需选用浓度为 7% ~ 8%的冷却液用以冷却润滑;
( 2) 在能保证螺纹精度和主轴负载的情况下,应尽可能的提高转速以保证挤压效率。从本文实验可知,转速应在 2000 r / min 以内为宜。即 M1. 2、M1. 4、M1. 6、M2 加工转速可分别取 2400 r / min、2100 r /min、1800 r / min、1500 r / min。
2024-11
机床整机性能测试与评估主要包括以下几个方面: (1)精度测试:包括直线轴、旋转轴的定位精度、重复定位精度、主轴端面跳动、径向跳动等指标测试,用激光干涉仪来检验机床精度是否达到设计要求。 (2)刚度测试:分为机床结构刚度和加工刚度两种,前者测试机床的整体刚度,后者测试机床在加工… [了解更多]
2024-11
数控机床的动力学特性是影响机床加工精度和效率的重要因素,结合面刚度变化及机床加工空间位置变化等因素会导致机床的动力学参数发生改变,影响机床的加工性能。为了探究五轴加工中心和五轴钻攻中心的动态特性及其影响因素,本文围绕转台轴承结合面刚度和加工空间位姿对双转台五轴机床的工作台回转系统… [了解更多]
2024-11
本文提出一种基于差分演化算法且无需简化机床旋转轴几何误差模型的旋转轴PIGEs辨 识方 法。首 先 基 于 经 典 的 球 杆 仪 轴 向、径 向 测 量 模式 辨 识 旋 转 轴 的PIGEs,获 得PIGEs初 始 解,然后利用差分演化算法整体优化求解旋转轴PIG-Es,获 … [了解更多]
2024-11
本文综合考虑铣削载荷、加工位置、机床姿态和结合部接触特性,建立了一种具有低自由度的双转台五轴加工中心动力学模型。并设计实际铣削工况时双转台五轴加工中心动力学特性实验,将实验得到的数据进行处理并与模型计算的结果进行对比,验证多体动力学模型的准确性。在此基础上,设计均匀设计试验分析不… [了解更多]
2024-11
影响木工五轴加工中心实木家具加工质量的因素很多,要提高加工质量和生产效率,可以从操作人员、五轴加工中心、器具、加工现场、工艺等五个方面入手,建立落实完善各种标准制度。另外,企业还要重视人员的培训和数据库的建立,才能提高加工质量,逐步实现实木家具生产数字化转型升级。… [了解更多]